

How Many Fixed Phase Shifters Are Needed in a Hybrid BF Structure?

Jamal Beiranvand, Vahid Meghdadi, Cyrille Menudier, and Jean-Pierre Cances

XLIM laboratory UMR CNRS N° 7252, Système et réseau intelligents

Outline

- Introduction to beamforming
- Hybrid beamforming by using fixed phase sifters
- The feasible set
- Simulation results
- Conclusion

Higher spectral efficiency

In higher frequencies we can support larger bandwidths

Advantage

• Higher spectral efficiencies

One of the challenges

• The free space propagation loss is proportional to the square of the carrier frequency

The solution

• Generating narrower beams by using a large number of antennas

What is Beamforming?

The main goal of the beamforming is to direct the signal towards intended users

Beamforming can be performed as:

- Full analog beamforming (AB)
- Full digital beamforming (DB)
- Hybrid beamforming (HB)

Full Analog beamforming

- Requires only one RF chain
- Needs one phase shifter per antenna
- Performed in the RF domain
- Low cost and complexity in implementation
- Supports only one stream

Full Digital Beamforming

- Supports multi streams
- Performed digitally at the baseband
- Oesn't need any phase shifters
- Requires an RF chain per antenna element
- Ostly and power hungry for massive MIMO systems

Full Digital Beamforming

Hybrid Beamforming

- Requires a few number of RF chains
- Low power and cost (in comparison with full digital)
- Needs digital and analog beamforming matrices
- Requires higher computational complexity

Full Digital Beamforming

Hybrid Beamforming

Continuous PS

$$\mathbf{F}_{\mathrm{RF}}\left(i,j\right) = e^{\jmath\phi_{ij}}, \quad \phi_{ij} \in [0,2\pi)$$

Continuous PS

$$\mathbf{F}_{\mathrm{RF}}\left(i,j\right) = e^{\jmath\phi_{ij}}, \quad \phi_{ij} \in \left[0,2\pi\right)$$

Quantized PS

$$\mathbf{F}_{\mathrm{RF}}(i,j) \in \left\{1, e^{j2\pi \frac{1}{N}}, \dots, e^{j2\pi \frac{N-1}{N}}\right\},\,$$

Continuous PS

$$\mathbf{F}_{\mathrm{RF}}\left(i,j\right) = e^{\jmath\phi_{ij}}, \quad \phi_{ij} \in [0,2\pi)$$

Switch

$$\mathbf{F}_{\mathrm{RF}}\left(i,j\right)\in\left\{ 0,1\right\} ,$$

Quantized PS

$$\begin{array}{c|c}
\mathbf{F}_{\mathrm{RF}}(i,j) \\
\hline
\mathbf{RF chain } j
\end{array}$$

$$\mathbf{F}_{\mathrm{RF}}\left(i,j\right) \in \left\{1, e^{\jmath 2\pi \frac{1}{N}}, \dots, e^{\jmath 2\pi \frac{N-1}{N}}\right\},\,$$

Continuous PS

$$\mathbf{F}_{\mathrm{RF}}(i,j) = e^{\jmath\phi_{ij}}, \quad \phi_{ij} \in [0,2\pi)$$

Switch

$$\mathbf{F}_{\mathrm{RF}}\left(i,j\right) \in\left\{ 0,1\right\} ,$$

Quantized PS

$$\mathbf{F}_{\mathrm{RF}}\left(i,j\right) \in \left\{1, e^{\jmath 2\pi \frac{1}{N}}, \dots, e^{\jmath 2\pi \frac{N-1}{N}}\right\},\,$$

Fixed PS with Switch

$$\mathbf{F}_{\mathrm{RF}}\left(i,j
ight)\in\mathcal{F}_{N},$$

System model deployed by FPSs and switches

$$\mathbf{y} = \sqrt{\rho \alpha} \mathbf{H}^\mathsf{T} \mathbf{F}_{\mathrm{RF}} \mathbf{x} + \mathbf{n}, \quad (1)$$

- y is the received signal at users' side
- x is the data stream vector
- n is the noise vector
- H is the channel matrix
 - FRF isthe analog BF matrix

System model deployed by FPSs and switches

$$\mathbf{y} = \sqrt{\rho \alpha} \mathbf{H}^\mathsf{T} \mathbf{F}_{\mathsf{RF}} \mathbf{x} + \mathbf{n}, \quad (1)$$

- v is the received signal at users' side
- x is the data stream vector
- n is the noise vector
- H is the channel matrix
 - FRF isthe analog BF matrix

$$\mathbf{F}_{\mathrm{RF}}(i,j) = \mathbf{s}_{ij}\mathbf{c}$$

$$\mathbf{s}_{ij} = \underset{\mathbf{s}_{ij}}{\operatorname{argmin}} \quad |\gamma \mathbf{F}(i,j) - \mathbf{s}_{ij} \mathbf{c}|^2 \tag{2}$$

s.t.
$$\mathbf{s}_{ij}(v) \in \{0,1\}, \quad \forall v = 1, \dots, N.$$

- \bullet γ is a scaling factor
- F is the fully digital precoder

The complete set \mathcal{S}_N

 $\mathbf{F}_{\mathrm{RF}}(i,j) = \mathbf{s}_{ij}\mathbf{c}$

- ullet \mathbf{s}_{ij} is an $1 \times N$ binary vector.
- $\mathbf{c} = [P_1, P_2, \dots, P_N]^{\mathrm{T}}$
- $P_m = e^{j\frac{2\pi}{N}(m-1)}$

The complete set \mathcal{S}_N

$$\mathbf{F}_{\mathrm{RF}}(i,j) = \mathbf{s}_{ij}\mathbf{c}$$

- ullet \mathbf{s}_{ij} is an $1 \times N$ binary vector.
- $\mathbf{c} = [P_1, P_2, \dots, P_N]^{\mathrm{T}}$
- $P_m = e^{j\frac{2\pi}{N}(m-1)}$

- $\bullet \ [N] = \{1,2,...,N\}$
- The power set $\Pi([N])$, is a set that contains all the subsets of the set [N].
- The complete set S_N , is a set that contains all generated coefficients:

$$\sum_{m \in \mathcal{A}_i} P_m \in \mathcal{S}_N \quad \forall i = 1, \dots, 2^N$$

ullet \mathcal{A}_i is the ith member of the power set $\Pi([N])$

The complete set S_N

$$\mathbf{F}_{\mathrm{RF}}(i,j) = \mathbf{s}_{ij}\mathbf{c}$$

- ullet \mathbf{s}_{ij} is an $1 \times N$ binary vector.
- $\mathbf{c} = [P_1, P_2, \dots, P_N]^{\mathrm{T}}$
- $P_m = e^{j\frac{2\pi}{N}(m-1)}$

$$[N] = \{1, 2, ..., N\}$$

- The power set $\Pi([N])$, is a set that contains all the subsets of the set [N].
- The complete set S_N , is a set that contains all generated coefficients:

$$\sum_{m \in \mathcal{A}_i} P_m \in \mathcal{S}_N \quad \forall i = 1, \dots, 2^N$$

• A_i is the *i*th member of the power set $\Pi([N])$

$$N=10$$
 $\mathcal{A}=\{2,4\}$ $\mathcal{S}_{10}(\mathcal{A})=P_2+P_4$

The complete set S_N

$$\mathbf{F}_{\mathrm{RF}}(i,j) = \mathbf{s}_{ij}\mathbf{c}$$

- \mathbf{s}_{ii} is an $1 \times N$ binary vector.
- $\mathbf{c} = [P_1, P_2, \dots, P_N]^{\mathrm{T}}$
- $P_m = e^{j\frac{2\pi}{N}(m-1)}$

- $[N] = \{1, 2, ..., N\}$
- The power set $\Pi([N])$, is a set that contains all the subsets of the set [N].
- The complete set S_N , is a set that contains all generated coefficients:

$$\sum_{m \in \mathcal{A}_i} P_m \in \mathcal{S}_N \quad \forall i = 1, \dots, 2^N$$

• A_i is the *i*th member of the power set $\Pi([N])$

$$N=10$$
 $\mathcal{A}=\{2,4\}$ $\mathcal{S}_{10}(\mathcal{A})=P_2+P_4$

- Zero-summation set
- Subset of zero-summation set

Zero-Summation Set

Set $\mathcal{X}_{N,p}$ of size p (prime number), is a **zero-summation set** (ZSS) if:

$$S_N(\mathcal{X}_{N,p}) = \sum_{m \in \mathcal{X}_{N,p}} P_m = 0$$

- ullet This happens if and only if, $\mathcal{X}_{N,p}$ selects phase shifters with equal phase differences.
- Therefore, p is a prime factor of N, there are N/p different ZSSs, $\mathcal{X}_{N,p}^i \ i=1,\dots,N/p.$

Zero-Summation Set

Introduction to beamforming

Set $\mathcal{X}_{N,p}$ of size p (prime number), is called **zero-summation set** (ZSS) if:

$$S_N(\mathcal{X}_{N,p}) = \sum_{m \in \mathcal{X}_{N,p}} P_m = 0$$

- This happens if and only if, $\mathcal{X}_{N,p}$ selects phase shifters with equal phase differences.
- If p is a prime factor of N, there are N/p different ZSSs, $\mathcal{X}_{N,p}^{i}$ $i=1,\ldots,N/p$.

Ex: for
$$N = 6$$
, $p_1 = 3$, $p_2 = 2$

$$\mathcal{X}_{6,3}^1 = \{1,3,5\} \ \mathcal{X}_{6,3}^2 = \{2,4,6\}$$

$$\mathcal{X}_{6,2}^{1} = \{1, 4\}$$

$$\mathcal{X}_{6,2}^1 = \{1,4\}$$
 $\mathcal{X}_{6,2}^2 = \{2,5\}$ $\mathcal{X}_{6,2}^3 = \{3,6\}$

$$\mathcal{X}_{6,2}^3 = \{3,6\}$$

Zero-Summation Set

• If $A_j = A_i \cup \mathcal{X}_{N,p}$, A_j generates a superposed point onto $\mathcal{S}_N(A_i)$ in \mathcal{S}_N , since:

$$S_N(A_j) = \sum_{m \in A_i} P_m + \sum_{\substack{m \in \mathcal{X}_{N,p} \\ m \in \mathcal{A}_i}} P_m$$
$$= \sum_{m \in A_i} P_m = S_N(A_i)$$

- Two phase shifters are dual of each other if the angle difference between them is 180-degree.
- ullet Only for even N, there are dual phase shifters
- ullet Consider $\mathcal{X}_{N,p}$ and its dual, $ar{\mathcal{X}}_{N,p}$

$$\mathcal{X}_{10,5} = \{1, 3, 5, 7, 9\}$$

- Two phase shifters are dual of each other if the angle difference between them is 180-degree.
- ullet Only for even N, there are dual phase shifters
- Consider $\mathcal{X}_{N,p}$ and its dual, $\bar{\mathcal{X}}_{N,p}$

$$\mathcal{X}_{N,p} = \mathcal{R}_{N,p} \cup \mathcal{B}_{N,p}$$
 $\mathcal{X}_{10,5} = \{1,3,5,7,9\}$
 $\mathcal{X}_{10,5} = \{1,3,5\}$
 $\mathcal{X}_{10,5} = \{1,3,5\}$

- Two phase shifters are dual of each other if the angle difference between them is 180-degree.
- ullet Only for even N, there are dual phase shifters
- Consider $\mathcal{X}_{N,p}$ and its dual, $\bar{\mathcal{X}}_{N,p}$

$$\sum_{m \in \mathcal{R}_{N,p}} P_m = \sum_{m \in \bar{\mathcal{B}}_{N,p}} P_m$$

For two sets A_i and A_j with common subset $A_c = A_i \cap A_j$, if

$$\begin{cases} \mathcal{A}_i \cap \mathcal{X}_{N,p} = \mathcal{R}_{N,p} \\ \mathcal{A}_i \cap \bar{\mathcal{X}}_{N,p} = \{\} \end{cases}, \qquad \begin{cases} \mathcal{A}_j \cap \mathcal{X}_{N,p} = \{\} \\ \mathcal{A}_j \cap \bar{\mathcal{X}}_{N,p} = \bar{\mathcal{B}}_{N,p}, \end{cases}$$

 A_i generates a superposed point of $S_N(A_j)$, since:

$$S_N(A_i) = \sum_{m \in A_c} P_m + \sum_{m \in \mathcal{R}_{N,p}} P_m$$
$$= \sum_{m \in A_c} P_m + \sum_{m \in \overline{\mathcal{B}}_{N,p}} P_m$$
$$= S_N(A_j)$$

For p=2, there is no SZSS since $\mathcal{X}_{N,2}=\bar{\mathcal{X}}_{N,2}$

The size of the feasible set \mathcal{F}_N

The size of the feasible set $|\mathcal{F}_N|$ as:

$$|\mathcal{F}_N| = \sum_{r=0}^{\xi_N - 1} {N \choose r} - \mathcal{Z}_N(r) - \mathcal{Q}_N(r)$$
(3)

- $\mathcal{Z}_N(r)$ represents the number of members of $\Pi_r([N])$ containing at least one ZSS
- $\mathcal{Q}_N(r)$ represents the number of members of $\Pi_r([N])$ containing at least one SZSS.
- ξ_N active phase shifters create at least one \mathcal{X}_{N,p_1} , where $\xi_N=N-\frac{N}{p_1}+1.$

N	$ \mathcal{S}_N $	$ \mathcal{F}_N $	$rac{ \mathcal{F}_N }{ \mathcal{S}_N }$
2	4	3	75.00%
3	8	7	87.50%
4	16	9	56.25%
5	32	31	96.88%
6	64	19	29.69%
7	128	127	99.22%
8	256	81	31.64%
9	512	343	66.99%
10	1024	211	20.61%
11	2048	2047	99.95%
12	4096	361	08.81%
13	8192	8191	99.99%
14	16384	2059	12.57%
15	32768	16081	49.08%
16	65536	6561	10.01%
17	131072	131071	100.00%

N	$ \mathcal{S}_N $	$ \mathcal{F}_N $	$rac{ \mathcal{F}_N }{ \mathcal{S}_N }$
2	4	3	75.00%
3	8	7	87.50%
4	16	9	56.25%
5	32	31	96.88%
6	64	19	29.69%
7	128	127	99.22%
8	256	81	31.64%
9	512	343	66.99%
10	1024	211	20.61%
11	2048	2047	99.95%
12	4096	361	08.81%
13	8192	8191	99.99%
14	16384	2059	12.57%
15	32768	16081	49.08%
16	65536	6561	10.01%
17	131072	131071	100.00%

N	$ \mathcal{S}_N $	$ \mathcal{F}_N $	$rac{ \mathcal{F}_N }{ \mathcal{S}_N }$
2	4	3	75.00%
3	8	7	87.50%
4	16	9	56.25%
5	32	31	96.88%
6	64	19	29.69%
7	128	127	99.22%
8	256	81	31.64%
9	512	343	66.99%
10	1024	211	20.61%
11	2048	2047	99.95%
12	4096	361	08.81%
13	8192	8191	99.99%
14	16384	2059	12.57%
15	32768	16081	49.08%
16	65536	6561	10.01%
17	131072	131071	100.00%

N	$ \mathcal{S}_N $	$ \mathcal{F}_N $	$rac{ \mathcal{F}_N }{ \mathcal{S}_N }$
2	4	3	75.00%
3	8	7	87.50%
4	16	9	56.25%
5	32	31	96.88%
6	64	19	29.69%
7	128	127	99.22%
8	256	81	31.64%
9			
10	1024	211	20.61%
10 11	1024 2048	211 2047	20.61% 99.95%
11	2048	2047	99.95%
11 12	2048 4096	2047 361	99.95% 08.81%
11 12 13	2048 4096 8192	2047 361 8191	99.95% 08.81% 99.99%
11 12 13 14	2048 4096 8192 16384	2047 361 8191 2059	99.95% 08.81% 99.99% 12.57%

Scatter plot of the feasible set

Spectral Efficiency

Figure: Performance comparison for different number of phase shifters, N.

Spectral Efficiency

Figure: Performance comparison for different values of SNR

Conclusion

- Performance depends on the number of distinct coefficients
- An even number of PSs is not a good choice at all
- A prime number of PSs is the most efficient selection
- 11 PSs is a good choice

THANKS FOR YOUR ATTENTION