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Introduction to beamforming
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Higher spectral efficiency

In higher frequencies we can support larger bandwidths

Advantage
@ Higher spectral efficiencies

One of the challenges
@ The free space propagation loss is proportional to the square of the carrier frequency
@ Generating narrower beams by using a large number of antennas
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What is Beamforming?

The main goal of the beamforming is to direct the signal towards intended users

Beamforming can be performed as:
@ Full analog beamforming (AB)
@ Full digital beamforming (DB)
@ Hybrid beamforming (HB)
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Full Analog beamforming

@ Requires only one RF chain

@ Needs one phase shifter per antenna

© Performed in the RF domain

@ Low cost and complexity in implementation
© Supports only one stream
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Full Digital Beamforming

@ Supports multi streams

@ Performed digitally at the baseband

© Doesn't need any phase shifters

@ Requires an RF chain per antenna element

© Costly and power hungry for massive MIMO systems

Full Digital Beamforming
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Hybrid Beamforming

@ Requires a few number of RF chains
@ Low power and cost (in comparison with full digital)
@ Needs digital and analog beamforming matrices

@ Requires higher computational complexity

Full Digital Beamforming

— | Digital Beamformer | —» - —> | Antenna Array
Ir'd
Antenna Array

Hybrid Beamforming
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How to perform the analog beamforming coefficients

Continuous PS
OF ] i

Frp (i,j) = %9, ¢i; €[0,2m)
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How to perform the analog beamforming coefficients

Continuous PS
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Quantized PS
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Introduction to beamforming

How to perform the analog beamforming coefficients

Continuous PS
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How to perform the analog beamforming coefficients

Continuous PS @ Switch
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Hybrid Beamforming by FPS
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System model deployed by FPSs and switches

>
K
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~{ Switches}

y = paH Frpx +n, (1)

y is the received signal at users’ side
x is the data stream vector
n is the noise vector

H is the channel matrix

FRF isthe analog BF matrix
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System model deployed by FPSs and switches

Frr(i, ) = sijc

{4 Switches]

ij = i F(i,j) — sijc|? 2
y:mHTFRFX+n, (1) Sij ar%::nn |’7 (17‘7) S]C| ( )

s.t. si(v) €{0,1}, Vo=1,...,N.
y is the received signal at users’ side
x is the data stream vector

n is the noise vector

H is the channel matrix @ 1y is a scaling factor

FRF isthe analog BF matrix

@ F is the fully digital precoder
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The complete set Sy

Frr(i,]) = sijc
@ s;j isan 1 X N binary vector.
@ c= [Pl,PQ,...,PN]T

@ P, = ej%(mfl)

Distinct points generated by 3-combinations
Distinct points generated by 2-combinations
Distinet points generated by 1 phase shifter
The zero point
120° 60°
o o

180°® ° . ° o0°
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The complete set Sy

[N ={1,2,..,N}

The power set II([N]), is a set that contains all the
subsets of the set [N].

@
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N

C Sij

The complete set Sy, is a set that contains all
L. generated coefficients:
Frr(i,7) = sijc .
@ s;; isan 1 X N binary vector. Z PneSy Vi=1,...,2
T meA;
@ c= [P17P27"'7PN]

o P, = eI H (m=1) A; is the ith member of the power set II([NV])

180°® ° . ° o0°
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The complete set Sy

[N ={1,2,..,N}

The power set II([N]), is a set that contains all the
subsets of the set [N].
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The complete set Sy, is a set that contains all
L. generated coefficients:
Frr(i,7) = sijc .
@ s;; isan 1 X N binary vector. Z PneSy Vi=1,...,2
T meA;
@ c= [P17P27"'7PN]

o P, = eI H (m=1) A; is the ith member of the power set II([NV])
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The complete set Sy

o [N] = {1,2,... N}

@ The power set II([IV]), is a set that contains all the
subsets of the set [N].

@ The complete set Sy, is a set that contains all

L. generated coefficients:
Frr(i,j) = sijc N
@ s;j isan 1 X N binary vector. Z Pnedy Vi=1,...,2
T meA;
@ c= [P17P27"'7PN]

o P, = eI H (m=1) @ A; is the ith member of the power set II([NV])
N =10
A=1{24} e
Y e\ S10(A) = P2 + Py w0,
. . . J @ Zero-summation set

@ Subset of zero-summation set
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Zero-Summation Set

Set X,y of size p (prime number), is a zero-summation set (ZSS) if:

N(Xnp)= D Pn=0

meXN p

@ This happens if and only if, X, selects phase shifters with equal phase differences.

@ Therefore, p is a prime factor of N, there are N/p different ZSSs,
Xi,i=1,...,N/p.
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Zero-Summation Set

Set Xn,p of size p (prime number), is called zero-summation set (ZSS) if:

Sn(Xnp)= > Pn=0

meXN p

@ This happens if and only if, X, selects phase shifters with equal phase differences.

@ If p is a prime factor of N, there are N/p different ZSSs, X]i\,,p t=1,...,N/p.

Ex: for N =6, p1 =3, p2 =2

1 2 1 2 3
X553 = {1,3,5) X§3={2,4,6} X5 o = {1,4} X5 o ={2,5} X5 o = {3,6}
O Tnactive PSs O uactive PSs O Tuactive PSs O Tuactive PSs o) ;
@ Ac s @  Active PSs @  Active PS: @  Active PSs @ Ad
[} Generated coefficient [ ] Generated coefficient @  Generated coefficient [ ] Generated coefficient [ ) Generated coefficient
120 60 120 60 120 6 60 120 60
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240 300 240 300

240 300 240 300 240 300
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Zero-Summation Set

o If A; = A; UXy ), Aj generates a superposed point onto Sy (A;) in Sn, since:

SN(AJ): Z Py + Z Py,

meA; meXN p

= 3 P =Sn(A)

meA;
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Subset of Zero-Summation Set

@ Two phase shifters are dual of each other if the angle difference between them is 180-degree.
@ Only for even N, there are dual phase shifters

@ Consider Xy, and its dual, Xy,

X10,5 = {1,3,5,7,9}

180° 120°
240° 60°
o e
[ o
300° o e e [
o] e}
o @
360° 120°
0° 60°

216 324

X10,5 = {2,4,6,8,10}
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Subset of Zero-Summation Set

@ Two phase shifters are dual of each other if the angle difference between them is 180-degree.

@ Only for even N, there are dual phase shifters

@ Consider Xy, and its dual, Xy,

X10,5 = {1,3,5,7,9}
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Subset of Zero-Summation Set

@ Two phase shifters are dual of each other if the angle difference between them is 180-degree.

@ Only for even N, there are dual phase shifters

@ Consider Xy, and its dual, Xy,

X10,5 = {1,3,5,7,9}
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Subset of Zero-Summation Set

> Pu= > Pu

mERN,p mengP

For two sets A; and A; with common subset A. = A; N A;, if

AiNXNnp=Rnyp AN &Ny ={}
AimX_N,p:{}7 ’ Ajﬁ)EN,p:BN,p:

A; generates a superposed point of Sn(A;), since:

SN(AI): Z Pm+ Z Pm,

meA. mERN,p

= Z Pm + Z Pm
meAc meBy p

= Sn(A;j)

For p = 2, there is no SZSS since X2 = Xn2



The feasible set
000000080000

The size of the feasible set Fy

The size of the feasible set |Fy| as:

Env—1

Fal= > () = 2n(r) — Qn(r) (3)

r=0

o Zn(r) represents the number of members of II,.([V]) containing at least one
ZSS

o Qn(r) represents the number of members of II,.([N]) containing at least one

SZSS.

@ & active phase shifters create at least one Xy ;,,, where {ny = N — pﬂl + 1.
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The obtained analytical results

NSl | 1A ] B
2 4 3 75.00%
3 8 7 87.50%
4 16 9 56.25%
5 32 31 96.88%
6 64 19 29.69%
7 128 127 99.22%
8 256 81 31.64%
9 512 343 66.99%
10 1024 211 20.61%
11 2048 2047 99.95%
12 4096 361 08.81%
13 8192 8191 99.99%
14 | 16384 2059 12.57%
15 | 32768 16081 49.08%
16 | 65536 6561 10.01%
17 | 131072 | 131071 | 100.00%
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The obtained analytical results
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The obtained analytical results
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Simulation Results
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Scatter plot of the feasible set

N =9, ng =2.8794 N =10, ny =3.2361
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Spectral Efficiency

80} UPA structure at Tx: 12x12 i
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o

Figure: Performance comparison for different number of phase shifters, N.
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Spectral Efficiency
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Figure: Performance comparison for different values of SNR
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Conclusion

@ Performance depends on the number of distinct coefficients
@ An even number of PSs is not a good choice at all
@ A prime number of PSs is the most efficient selection

@ 11 PSs is a good choice
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